Linear Subspace Learning based on a Learned Discriminative Dictionary for Sparse Coding
نویسندگان
چکیده
Learning linear subspaces for high-dimensional data is an important task in pattern recognition. A modern approach for linear subspace learning decomposes every training image into a more discriminative part (MDP) and a less discriminative part (LDP) via sparse coding before learning the projection matrix. In this paper, we present a new linear subspace learning algorithm through discriminative dictionary learning. Our main contribution is a new objective function and its associated algorithm for learning an overcomplete discriminative dictionary from a set of labeled training examples. We use a Fisher ratio defined over sparse coding coefficients as the objective function. Atoms from the optimized dictionary are used for subsequent image decomposition. We obtain local MDPs and LDPs by dividing images into rectangular blocks, followed by blockwise feature grouping and image decomposition. We learn a global linear projection with higher classification accuracy through the local MDPs and LDPs. Experimental results on benchmark face image databases demonstrate the effectiveness of our method.
منابع مشابه
Rice Classification and Quality Detection Based on Sparse Coding Technique
Classification of various rice types and determination of its quality is a major issue in the scientific and commercial fields associated with modern agriculture. In recent years, various image processing techniques are used to identify different types of agricultural products. There are also various color and texture-based features in order to achieve the desired results in this area. In this ...
متن کاملA Novel Image Denoising Method Based on Incoherent Dictionary Learning and Domain Adaptation Technique
In this paper, a new method for image denoising based on incoherent dictionary learning and domain transfer technique is proposed. The idea of using sparse representation concept is one of the most interesting areas for researchers. The goal of sparse coding is to approximately model the input data as a weighted linear combination of a small number of basis vectors. Two characteristics should b...
متن کاملSpeech Enhancement using Adaptive Data-Based Dictionary Learning
In this paper, a speech enhancement method based on sparse representation of data frames has been presented. Speech enhancement is one of the most applicable areas in different signal processing fields. The objective of a speech enhancement system is improvement of either intelligibility or quality of the speech signals. This process is carried out using the speech signal processing techniques ...
متن کاملA New Dictionary Construction Method in Sparse Representation Techniques for Target Detection in Hyperspectral Imagery
Hyperspectral data in Remote Sensing which have been gathered with efficient spectral resolution (about 10 nanometer) contain a plethora of spectral bands (roughly 200 bands). Since precious information about the spectral features of target materials can be extracted from these data, they have been used exclusively in hyperspectral target detection. One of the problem associated with the detect...
متن کاملDiscriminative Tensor Sparse Coding for Image Classification
A novel approach to learn a discriminative dictionary over a tensor sparse model is presented. A structural incoherence constraint between dictionary atoms from different classes is introduced to promote discriminating information into the dictionary. The incoherence term encourages dictionary atoms to be as independent as possible. In addition, we incorporate classification error into the obje...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013